GESTIÓN DE LA PRODUCCIÓN Y OPERACIONES

Naim Caba Villalobos
Oswaldo Chamorro Altahona
Tomás José Fontalvo Herrera

 

5.7 Planeación de Requerimiento de Capacidad

Para estar a tono con las circunstancias actuales, como no son otras que la nueva ola de la globalización y el TLC que implican para nuestro país un mayor y mejor desarrollo de las organizaciones productivas para la liberación de fronteras y la constitución de bloques y frentes mancomunados de trabajo, se requiere un análisis detallado de los recursos productivos con que cuenta una organización sea pública o privada.

Sea donde sea el punto de partida, es inevitable llegar al establecimiento de la capacidad técnica y real de los sitios de trabajo de las empresas, fábricas o factorías.

Hace pocos hace trabajada con niveles por debajo de las potencialidades de las instalaciones. Situación debida a que la actividad económica se basaba en el principio proteccionista de puertas cerradas, hoy en día además de dar un mayor énfasis a la calidad del producto, gracias a la introducción de mejores tecnologías, se hace más importante saber dimensionar la capacidad de trabajo de las organizaciones como respuesta a los requerimientos del mercado.

5.7.1 Análisis de capacidad

Se debe entender la capacidad como el potencial de trabajo con que se cuenta, medidas para los diferentes sitios de trabajo. Estos medios de trabajo pueden ser máquinas, instalaciones, puestos de trabajo y en fin, todos aquellos lugares donde se desarrollan tareas plenamente establecidas y que contribuyen a la elaboración de los bienes o la prestación de servicios.

Se distinguen cinco tipos de capacidad. 1. Capacidad Técnica CT 2. Capacidad Instalada CI 3. Capacidad disponible CD 4. Capacidad necesaria CN 5. Capacidad utilizada CU

Estas capacidades pueden ser expresadas en distintos tipos de unidades dimensionales, entre las cuales tenemos:

● Unidades de tiempo (horas/año)

● Unidades energéticas (kilowatios/año)

● Unidades económicas o monetarias ($/año)

● Unidades físicas (unidades/año)

Sin embargo y aunque la escogencia entre una u otra capacidad dimensional depende del fin que se tenga, tomaremos para nuestro caso las unidades de tiempo, ya que son estas las de mayor aplicación en las organizaciones productivas.

Adicionalmente, se elige un año como aquel período base del estudio, por ser este el mas común parte este tipo de análisis, no sin antes dejar en clareo que cualquier otro lapso puede ser considerado, dependiendo nuevamente del uso que le dé el encargado de hacer este estudio.

5.7.2 Definiciones y modelos matemáticos

Capacidad teórica

Como su nombre lo indica, es la capacidad máxima de producción y que está prevista desde la construcción y/o conformación de los sitios de trabajo; este nivel de capacidad nunca se trabaja y solo sirve para fronteras de análisis.

CTi = 365(día/año) x 24(horas/día) x ni Donde: CTi: Es la capacidad teórica del sitio de trabajo ni : Es el número de sitios de trabajo del tipo i

La capacidad teórica de toda la organización será: n n CT = ∑ CTi = ∑ 365x24xni I=1 i=1 Para n sitios de trabajo distintos

Capacidad instalada

Es la máxima capacidad real de trabajo y considera las disminuciones de tiempo previstas para el mantenimiento preventivo de los medios de trabajo. Estas pérdidas son generalmente recomendadas por los fabricantes de los medios de trabajo (máquinas, herramientas), por los de departamentos de mantenimiento o en el peor de los casos deben ser 5 dados con el mejor criterio por parte de los jefes de producción. CIi = (Ddías/año) x horas/día - gihoras/año) x ni. Donde: Cli: Es la capacidad instalada del sitio de trabajo i ni: Es el número de sitio de trabajo del tipo i gi: Son las pérdidas por mantenimiento preventivo de una unidad de sitio de trabajo i expresadas en horas/año La capacidad instalada es: n n CI =∑CIi =∑ (365x24-gi) I=1 i=1 Para n sitios de trabajo distintos

 

Capacidad disponible

Esta capacidad es con la que realmente trabaja una empresa ya que reconoce las deficiencias con que normalmente labora la organización. Adicionalmente se establecen las condiciones de producción que dependen de la política interna y de la administración de recursos de manufactura, así como las normas de trabajo y la jurisprudencia en que se circunscribe. CDi = (dhdia/añoxni turno /diaxdti horas/turnoxni –G1 – (G2+G3+G4) Nxni Donde: CDi: Es la capacidad disponible del sitio de trabajo i. dh: Son los días hábiles que labora la empresa en el año. nti: Número de turnos diarios que se trabaja en el sitio de trabajo i. dti. Duración de los turnos, estos pueden variar de un sitio de trabajo a otro. ni: Es el número de sitios de trabajo tipo i. G1: Son las pérdidas totales por mantenimiento de todos los sitios de trabajo. G2: Son la pérdidas por no existencia del personal productivo expresada en horas/año. En este rubro se incluye la inasistencia justificada o no y se pueden obtener de las estadísticas. G3: Son las pérdidas por factores organizacionales; es decir, las pérdidas causadas por una mala o deficiente gestión de la producción. G4: Son las pérdidas por factores aleatorios no previsibles; incluyen disminuciones causadas por factores naturales, políticos, sociales, económicos, etc. La capacidad disponible es: n n CD = ∑ DCi = ∑ (dhxntixdti-gi) xni-(G1+G3+G4) i= 1 i=1 Para n sitios de trabajo distintos

Capacidad necesaria

Es la capacidad que se requiere para cumplir con un programa o plan de producción determinado. Este plan normalmente se trabaja con los pronósticos de ventas. p CNi= ∑ Qpj (unidades/año) xtpij (horas/unidad) j=1

Donde:

CNi: Es la capacidad necesaria del sitio de trabajo i Qpj: Es la cantidad planeada de producto tipo ji existirán P, tipos distintos de productos. Esta cantidad planeada será anual, aunque puede abarcar otro periodo diferente. Tpji: Es el tiempo planeado de ejecución de una unidad de producto tipo j en el sitio de trabajo i. Este tiempo es el que comúnmente se conoce como tiempo estándar de manufactura o tiempo tipo. La capacidad necesaria total es: n nn CN = ∑ CNi = ∑∑ Qpjxtpij j=1 i=1 j=1 Para n sitios de trabajo distintos y p tipos diferentes de productos.

Capacidad utilizada

Es la capacidad que realmente se consumió en la elaboración en la producción. Se calcula después del ejercicio contable y sirve como medida de efectividad y control.

p CUi = ∑ Qrj (Unidades/año) xtrij (horas/unidad) j =1

Donde: Cui. Es la capacidad utilizada en el sitio de trabajo i Qrj: Es la cantidad realmente elaborada de producto tipo j en el período de tiempo considerado. trij: Es el tiempo realmente gastado en los distintos sitios de trabajo in para la manufactura del producto j. La capacidad utilizada es: n n p CU = ∑Cui =∑ ∑ Qrjxtrij i=1 i=1 j=1 Para n sitios de trabajo distintos y P tipos diferentes de productos.

5.7.3 Diseño y capacidad del sistema

El diseño de una instalación puede afectar la ubicación y estas su vez, afecta la capacidad. Las capacidades deben ser establecidas en unidades físicas, tiempo de servicio, u horas de trabajo, mas que un volumen de ventas en dinero. La capacidad de diseño de una instalación es la tasa de salida de productos estandarizados en condiciones de operación normales. Esto se basa en el conocimiento de la demanda de los consumidores y del establecimiento de una política para satisfacer la demanda. Una compañía de seguros para automóviles procesa las pólizas secuencialmente mediante cuatro centros (A, B, C y D), los cuales manejan las actividades de búsqueda y registro. Las capacidades de cada centro de trabajo individual y el promedio real de pólizas procesadas por día es el que se indica. Encuéntrese a) La capacidad del sistema b) Su eficiencia.

a) Capacidad del sistema= capacidad del componente mas limitado en la línea = 22 pólizas/día b) Eficiencia (Es)= ______Procesado real___=18 = 0.82 =82% Capacidad del Sistema 22

Cálculo de los requerimientos de equipos Si la producción real es especificada, la cantidad o el tamaño del equipo que se requiere para cubrir esa producción pueden ser mejor determinados para incluir pérdidas e ineficiencias del sistema. Ejemplo: Un proveedor de equipo para automóviles desea instalar un número suficiente de hornos para producir 400.000 moldes por año. La operación de horneado requiere 2 minutos por molde, pero la producción del horno tiene regularmente 6% de defectuosos. ¿Cuántos hornos se necesitan si uno está disponible durante 1800 horas (de capacidad por año) Capacidad que requiere el sistema= Producción (buena) real Es =400.000=425.532 Unidades/año 0.94 Convirtiendo a unidades/hr: 425.532unidades/año=236 unidades/hr. 1800 hr/año Capacidad de cada horno = 60 min./hr = 30 unidades /Horno – hr. 2 min. /unidad Numero de hornos requeridos= 236 unidades/hr. =7.9 (8) hornos 30unidasdes/horno-hr.

 

Balanceo de línea de las distribuciones por producto

El balanceo de línea es una distribución de las actividades secuenciales de trabajo en los centros laborales para lograr el máximo aprovechamiento de la mano de obra y del equipo y de ese modo reducir o eliminar el tiempo ocioso. Las actividades que son compatibles entre sí, se combinan en grupos de tiempos aproximadamente iguales que no violan la precedencia de las relaciones. La duración del tiempo de trabajo (o de operación) que cada componente de un centro de trabajo tiene disponible, es el tiempo de ciclo, CT.

CT = Tiempo disponible/periodo_____________ = TD____ Producción de unidades requeridas/Periodo Producción

En la igualdad anterior, se puede concluir que CT es también el intervalo que transcurre para que los terminados dejen la línea de producción. Si el tiempo requerido en cualquier estación excede del disponible para un trabajador, tienen que agregarse trabajadores. El número teórico (ideal) de trabajadores que se requiere en la línea de montaje es el resultado de multiplicar el tiempo que necesita un trabajador para terminar una unidad por número de unidades necesarias, dividido entre el tiempo disponible.

Número mínimo teórico de trabajadores = (Tiempo trabajador/unidad)(Unidades producidas/periodo) = Σt Tiempo disponible/periodo CT

EJEMPLO: El diagrama de precedencia indica las actividades de ensamble de un producto desde la estación A a G y las relaciones de requerimiento de tiempos en minutos. La línea trabaja 8 horas por día y se desea una producción de 800 unidades por día. Determine: a) El tiempo de ciclo, b) El número mínimo de trabajadores que se requieren.

CT = Tiempo disponible/periodo

Número de unidades produc.req./periodo = 8 horas/día)(60min. Hora) = 480 = 0.60 min./unidad 800 unidades/día 800 Mínimo teórico = Σt CT Σt= 0.50+0.30+0.22+0.10+0.50+0.25+0.23 = 2.10

Mínimo teórico = Σt = 2.10 = 3.50 trabajadores (Teórico no real) CT 0.60 El procedimiento para analizar los problemas de balanceo de línea implica: a) determinar el número de estaciones y el tiempo disponible en cada estación, b) agrupar las tareas individuales en cantidades de trabajo por estación, y c) evaluar la eficiencia del agrupamiento. Un balanceo eficiente reducirá al mínimo posible la cantidad de tiempo ocioso. La eficiencia del Balance (EFB) puede ser calculada de dos maneras:

EFB = Número de veces que se realiza una actividad = Σt Cantidad de insumos proporcionados para realizarla CT EFB = Número teórico de trabajadores Número real de trabajadores

a) Agrúpense las tareas en la línea de ensamble en el número adecuado de estaciones de trabajo y b) Calcule la eficiencia del Balanceo. El CT de 0.60 minutos significa que 0.60 minutos están disponibles en cada puesto de trabajo. La unidad requiere 0.50 de los 0.60 minutos disponibles en la primera estación de trabajo, para la siguiente (B) es demasiado grande para combinarse con A. La otra C y D se pueden combinar, sin embargo para ellas el total es 0.52 minutos, de igual modo D y E y F y G.

EFB=Σt= 2.10 = 2.10 = 87,5% donde: n= Número de estaciones y CT= Ciclo/Estación CTn (0.60)(4) 2.4

EFB=Número teórico de trabajadores =3,5 = 87,5%. Número Total de Trabajadores 4

Suponga que las actividades mostradas en la figura anterior se agrupan solo en tres (3) estaciones para fines de ensamble a) ¿Cuál es el ciclo neto?, b) ¿Cuál es el agrupamiento en actividades que da lugar a la mayor producción? c) ¿Qué producción se obtendrá en 8 horas por día?

a) CTm= Σt =2.10 =0.70 min./estación n 3 b) La mayor producción resultará del CT más pequeño

 

El agrupamiento que la mayor producción es la del CT menor o sea 0.80 es decir, las estaciones quedaran así: No.1: A y B; No.2: C y E; No. 3: D, F y G c) Producción = 8 h/día x60min./h = 480 = 600 Unidades/día 0.80 min. /unidad 0.80

5.7.4 Entradas y Salidas del PRC

La capacidad es una medida de la posibilidad productiva de una instalación por unidad de tiempo. En términos de horizonte de tiempo relevante, las decisiones administrativas acerca de la capacidad están relacionadas con lo siguiente: 1. Largo Plazo: planeación de recursos de capital, equipo y humanos. 2. Mediano Plazo: planeación de requerimientos de mano de obra y equipo para cumplir las necesidades del PRM. 3. Corto Plazo: control de flujo (entrada y salida) y secuenciación de operaciones

La planeación de requerimiento de capacidad (PRC) se aplica primariamente a actividades de mediano plazo. Como se muestra Figura 5-9, el sistema PRC recibe órdenes planeadas y programadas del sistema de planeación de requerimiento de materiales, e intenta desarrollar cargas para los centros de trabajo de la empresa que estén balanceadas con las capacidades de los centros de trabajo . Como el PRM, el PRC es un proceso interactivo que incluye planeación, revisión de la capacidad (o revisión del plan maestro), y replantación hasta que es desarrollado un buen perfil de cargas de trabajo razonables.

ENTRADAS SALIDAS Planeación y programación de órdenes del sistema PRM Reportes de cargas de órdenes planeadas y programadas en los centros de trabajo clave. Capacidad de carga de los centros de trabajo Verificación de reportes del sistema PRM Datos de ruteo Datos de modificación de capacidades Cambios que modifiquen capacidad, dadas, rutas alternativas, o alteren órdenes planeadas Reprogramación de datos a PMP

 

5.7.5 Actividades de PRC: Cargas infinitas y finitas

Antes de definir los conceptos de cargas infinitas e infinitas es conveniente conocer el concepto de centro de trabajo de producción. Un centro de trabajo es el área de una empresa en la cual los recursos productivos se organizan y el trabajo se lleva a cabo. Un centro de trabajo puede ser una sola máquina, un grupo de máquinas o un área donde se realiza un determinado tipo de trabajo. Los centros de trabajo pueden organizarse de acuerdo con la función en una configuración de taller de trabajo; o por producto en una configuración de flujo, línea de ensamble o célula de tecnología de grupo (TG).

La carga infinita se presenta cuando la tarea ha sido asignada a un centro de trabajo basada simplemente en lo que se necesita con el tiempo. No se considera el hecho de si existe la capacidad suficiente de los recursos requeridos para completar el trabajo, como tampoco si la secuencia real del mismo se realiza con cada recurso en el centro de trabajo considerado. Con frecuencia se hace una simple revisión de los recursos clave para ver si están sobrecargados en sentido global.

Cuando se utiliza un sistema de carga infinita, el plazo se calcula tomando un múltiplo del tiempo de operación previsto (preparación y tiempo de funcionamiento) mas una demora en la cola prevista causada por el movimiento del material y la espera del orden en que se va a trabajar.

El enfoque de carga finita programa realmente en detalle cada recurso utilizando el tiempo de preparación y de funcionamiento requerido para cada pedido. En esencia, el sistema determina con exactitud que hará cada recurso en cada momento durante el día de trabajo. En el caso que una operación se demore debido a escasez de las partes, el pedido entrará a una cola y esperará hasta que la parte esté disponible de una operación anterior.

5.7.6 Un ejemplo de aplicación del PRC y otros ejercicios de aplicación para cargas infinitas y finitas

1. Un centro de trabajo opera 6 días por semana con base en dos turnos por día (8 horas por turno) y tiene cuatro máquinas con la misma capacidad: Si las máquinas son utilizadas 75% del tiempo con una eficiencia de 90% ¿Cuál es la tasa de producción en horas estándar por semana?

Tasa de capacidad = (Número de Máquinas)(Horas Máq.) (% de Utiliz.)(Eficien. del sistema) = (4) (8x6x2) (0.75)(0.90) = 259 horas estándar por semana 2. Una empresa manufacturera utiliza el sistema PRM y planea ajustar su capacidad cuando la desviación acumulada exceda la mitad del promedio pronosticado por semana.

a) Formúlese el plan de requerimiento de capacidad mostrando la necesidad promedio con una línea punteada. b) Supóngase que los requerimientos reales para las primeras cinco semanas fueron 390, 460, 280, 510 y 550, y calcúlese la desviación acumulada de horas (real - planeada).

c) ¿Necesitan ajustes estos tipos de requerimientos?

3. Un fabricante de muebles de oficina tiene un centro de trabajo con tres prensas metálicas. Las cuales operan cada una con 7,5 horas por turno en tres turnos por día, 6 días por semana. Las prensas son asignadas a la fabricación de muebles 80% del tiempo, con el resto reservado para trabajos especiales. Si la eficiencia de la máquina es de 95% ¿cuál es la tasa de producción de muebles en horas estándar por semana?

Volver al índice.

Enciclopedia Virtual
Tienda
Libros Recomendados


1647 - Investigaciones socioambientales, educativas y humanísticas para el medio rural
Por: Miguel Ángel Sámano Rentería y Ramón Rivera Espinosa. (Coordinadores)

Este libro es producto del trabajo desarrollado por un grupo interdisciplinario de investigadores integrantes del Instituto de Investigaciones Socioambientales, Educativas y Humanísticas para el Medio Rural (IISEHMER).
Libro gratis
Congresos

15 al 28 de febrero
III Congreso Virtual Internacional sobre

Desafíos de las empresas del siglo XXI

15 al 29 de marzo
III Congreso Virtual Internacional sobre

La Educación en el siglo XXI

Enlaces Rápidos

Fundación Inca Garcilaso
Enciclopedia y Biblioteca virtual sobre economía
Universidad de Málaga